On the Number of Eigenvalues of the Discrete One-dimensional Schrödinger Operator with a Complex Potential
نویسنده
چکیده
We study the eigenvalues of the discrete Schrödinger operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.
منابع مشابه
On the Number of Eigenvalues of the Discrete One-dimensional Dirac Operator with a Complex Potential
In this paper we define a one-dimensional discrete Dirac operator on Z. We study the eigenvalues of the Dirac operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.
متن کاملDiscrete and Embedded Eigenvalues for One-dimensional Schrödinger Operators
I present an example of a discrete Schrödinger operator that shows that it is possible to have embedded singular spectrum and, at the same time, discrete eigenvalues that approach the edges of the essential spectrum (much) faster than exponentially. This settles a conjecture of Simon (in the negative). The potential is of von Neumann-Wigner type, with careful navigation around a previously iden...
متن کاملOn the spectrum of a Schrödinger operator perturbed by a fast oscillating potential
We study the spectrum of a one-dimensional Schrödinger operator perturbed by a fast oscillating potential. The oscillation period is a small parameter. The essential spectrum is found in an explicit form. The existence and multiplicity of the discrete spectrum are studied. The complete asymptotics expansions for the eigenvalues and the associated eigenfunctions are constructed.
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملLocalization of Eigenvalues in Small Specified Regions of Complex Plane by State Feedback Matrix
This paper is concerned with the problem of designing discrete-time control systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary similarity operations we find a state feedback which assigns the eigenvalues inside a circle with center and radius. This new algorithm ca...
متن کامل